An Approximate Analytical Approach to Resampling Averages
نویسندگان
چکیده
Using a novel reformulation, we develop a framework to compute approximate resampling data averages analytically. The method avoids multiple retraining of statistical models on the samples. Our approach uses a combination of the replica “trick” of statistical physics and the TAP approach for approximate Bayesian inference. We demonstrate our approach on regression with Gaussian processes. A comparison with averages obtained by Monte-Carlo sampling shows that our method achieves good accuracy.
منابع مشابه
Approximate Analytical Bootstrap Averages for Support Vector Classifiers
We compute approximate analytical bootstrap averages for support vector classification using a combination of the replica method of statistical physics and the TAP approach for approximate inference. We test our method on a few datasets and compare it with exact averages obtained by extensive Monte-Carlo sampling.
متن کاملA Statistical Mechanics Approach to Approximate Analytical Bootstrap Averages
We apply the replica method of Statistical Physics combined with a variational method to the approximate analytical computation of bootstrap averages for estimating the generalization error. We demonstrate our approach on regression with Gaussian processes and compare our results with averages obtained by Monte-Carlo sampling.
متن کاملResampling and requantization of band-limited Gaussian stochastic signals with flat power spectrum
A theoretical analysis, aimed at characterizing the degradation induced by the resampling and requantization processes applied to band-limited Gaussian signals with flat power spectrum, available through their digitized samples, is presented. The analysis provides an efficient algorithm for computing the complete joint bivariate discrete probability distribution associated to the true quantized...
متن کاملEmpirical Likelihood Approach and its Application on Survival Analysis
A number of nonparametric methods exist when studying the population and its parameters in the situation when the distribution is unknown. Some of them such as "resampling bootstrap method" are based on resampling from an initial sample. In this article empirical likelihood approach is introduced as a nonparametric method for more efficient use of auxiliary information to construct...
متن کاملNon-Parametric Standard Errors and Tests for Network Statistics
Two procedures are proposed for calculating standard errors for network statistics. Both are based on resampling of vertices: the first follows the bootstrap approach, the second the jackknife approach. In addition, we demonstrate how to use these estimated standard errors to compare statistics using an approximate t-test and how statistics can also be compared by another bootstrap approach tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 4 شماره
صفحات -
تاریخ انتشار 2003